7,975 research outputs found

    New conjecture for the SUq(N)SU_q(N) Perk-Schultz models

    Full text link
    We present a new conjecture for the SUq(N)SU_q(N) Perk-Schultz models. This conjecture extends a conjecture presented in our article (Alcaraz FC and Stroganov YuG (2002) J. Phys. A vol. 35 pg. 6767-6787, and also in cond-mat/0204074).Comment: 3 pages 0 figure

    Generalization of the matrix product ansatz for integrable chains

    Full text link
    We present a general formulation of the matrix product ansatz for exactly integrable chains on periodic lattices. This new formulation extends the matrix product ansatz present on our previous articles (F. C. Alcaraz and M. J. Lazo J. Phys. A: Math. Gen. 37 (2004) L1-L7 and J. Phys. A: Math. Gen. 37 (2004) 4149-4182.)Comment: 5 pages. to appear in J. Phys. A: Math. Ge

    Exactly solvable interacting vertex models

    Full text link
    We introduce and solvev a special family of integrable interacting vertex models that generalizes the well known six-vertex model. In addition to the usual nearest-neighbor interactions among the vertices, there exist extra hard-core interactions among pair of vertices at larger distances.The associated row-to-row transfer matrices are diagonalized by using the recently introduced matrix product {\it ansatz}. Similarly as the relation of the six-vertex model with the XXZ quantum chain, the row-to-row transfer matrices of these new models are also the generating functions of an infinite set of commuting conserved charges. Among these charges we identify the integrable generalization of the XXZ chain that contains hard-core exclusion interactions among the spins. These quantum chains already appeared in the literature. The present paper explains their integrability.Comment: 20 pages, 3 figure

    Nonlocal growth processes and conformal invariance

    Full text link
    Up to now the raise and peel model was the single known example of a one-dimensional stochastic process where one can observe conformal invariance. The model has one-parameter. Depending on its value one has a gapped phase, a critical point where one has conformal invariance and a gapless phase with changing values of the dynamical critical exponent zz. In this model, adsorption is local but desorption is not. The raise and strip model presented here in which desorption is also nonlocal, has the same phase diagram. The critical exponents are different as are some physical properties of the model. Our study suggest the possible existence of a whole class of stochastic models in which one can observe conformal invariance.Comment: 27 pages, 22 figure

    A conformal invariant growth model

    Full text link
    We present a one-parameter extension of the raise and peel one-dimensional growth model. The model is defined in the configuration space of Dyck (RSOS) paths. Tiles from a rarefied gas hit the interface and change its shape. The adsorption rates are local but the desorption rates are non-local, they depend not only on the cluster hit by the tile but also on the total number of peaks (local maxima) belonging to all the clusters of the configuration. The domain of the parameter is determined by the condition that the rates are non-negative. In the finite-size scaling limit, the model is conformal invariant in the whole open domain. The parameter appears in the sound velocity only. At the boundary of the domain, the stationary state is an adsorbing state and conformal invariance is lost. The model allows to check the universality of nonlocal observables in the raise and peel model. An example is given.Comment: 11 pages and 8 figure

    Exact Solution of the Asymmetric Exclusion Model with Particles of Arbitrary Size

    Full text link
    A generalization of the simple exclusion asymmetric model is introduced. In this model an arbitrary mixture of molecules with distinct sizes s=0,1,2,...s = 0,1,2,..., in units of lattice space, diffuses asymmetrically on the lattice. A related surface growth model is also presented. Variations of the distribution of molecules's sizes may change the excluded volume almost continuously. We solve the model exactly through the Bethe ansatz and the dynamical critical exponent zz is calculated from the finite-size corrections of the mass gap of the related quantum chain. Our results show that for an arbitrary distribution of molecules the dynamical critical behavior is on the Kardar-Parizi-Zhang (KPZ) universality.Comment: 28 pages, 2 figures. To appear in Phys. Rev. E (1999

    The Exact Solution of the Asymmetric Exclusion Problem With Particles of Arbitrary Size: Matrix Product Ansatz

    Full text link
    The exact solution of the asymmetric exclusion problem and several of its generalizations is obtained by a matrix product {\it ansatz}. Due to the similarity of the master equation and the Schr\"odinger equation at imaginary times the solution of these problems reduces to the diagonalization of a one dimensional quantum Hamiltonian. We present initially the solution of the problem when an arbitrary mixture of molecules, each of then having an arbitrary size (s=0,1,2,...s=0,1,2, ...) in units of lattice spacing, diffuses asymmetrically on the lattice. The solution of the more general problem where we have | the diffusion of particles belonging to NN distinct class of particles (c=1,...,Nc=1, ..., N), with hierarchical order, and arbitrary sizes is also solved. Our matrix product {\it ansatz} asserts that the amplitudes of an arbitrary eigenfunction of the associated quantum Hamiltonian can be expressed by a product of matrices. The algebraic properties of the matrices defining the {\it ansatz} depend on the particular associated Hamiltonian. The absence of contradictions in the algebraic relations defining the algebra ensures the exact integrability of the model. In the case of particles distributed in N>2N>2 classes, the associativity of the above algebra implies the Yang-Baxter relations of the exact integrable model.Comment: 42 pages, 1 figur
    • …
    corecore